If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6x^2+280x-1200=0
a = -6; b = 280; c = -1200;
Δ = b2-4ac
Δ = 2802-4·(-6)·(-1200)
Δ = 49600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{49600}=\sqrt{1600*31}=\sqrt{1600}*\sqrt{31}=40\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(280)-40\sqrt{31}}{2*-6}=\frac{-280-40\sqrt{31}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(280)+40\sqrt{31}}{2*-6}=\frac{-280+40\sqrt{31}}{-12} $
| 0.25b-83=-86 | | -6x^2-280x-1200=0 | | 225+548=x | | -2(x-3)+4x=-(-x)+1 | | 2c+6-8c+5= | | 3(5x+2)=8-+20 | | 4g3;g=-4 | | (2x-9)/(x+7)=0 | | X=6x+33 | | 7(12-x)=49 | | 6(5+x)=72 | | (x-5)*(2x+4)=0 | | 12(x+x)=58 | | 2(120-1.5y)+3y=240 | | +36=+4y | | y/5y+2=42 | | 10m²=160 | | ?x3=19 | | 13x–5=10x+7,x | | 2(3x-200)=x+200 | | 9y+17=6y+26 | | a–152=90 | | x+1.24–0.07x=4.96 | | 30+7y=-3y+6 | | (2,-6);r=7/2 | | (0,7);r=13 | | 2x‐8=x+1 | | x/35=5 | | 15n=75 | | 36=17+v | | 63-y=48 | | 28+y=50 |